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Robust Train Timetabling problem: Mathematical model and Branch and bound algorithm

M. A. Shafia, M. Pourseyed Aghaee, S. J. Sadjadi, and A. Jamili


Abstract—The most important operating problem in any railway industry is to produce train timetables with minimum delays that is robust against disturbances. This paper illustrates the results of an investigation on developing a new robust train timetabling problem. The proposed model is formulated as a robust form of mixed integer approach. A branch and bound (B&B) algorithm, along with a new heuristic Beam Search (BS) algorithm are presented to solve the model for large-scale problems in a rational amount of time. We also propose two different methods to measure the required buffer times under the assumption of unknown and known distribution functions of disturbances. We have generated some random instances and the efficiency of the B&B algorithm as well as the BS algorithm is demonstrated through comparing the results with common software packages, and also a new Lower bound method. The proposed BS algorithm is also applied for a real world case study of the Iranian railway industry. 
Index Terms— Branch and bound algorithm, Disturbance, Robustness, Train Scheduling

I. INTRODUCTION

R

ail Transportation planning affairs can be divided into different categories such as analyzing passenger demand, line planning, train schedule planning, rolling stock planning, and crew management [1]. In this paper, the studied train scheduling problem, benefits the outcomes of train routings [2] as the input data, while the output of this problem is used for the rolling stock assignment problem [3]. The train scheduling problem is considered as the most challenging problem in railway planning. A train timetable defines the planed arrival and departure times of trains to/from stations. The classic objective function is to minimize the total delays of trains. The idea can also be extended when other kinds of objectives, such as the minimization of the deviation from the working hours of crews and the fuel consumption, are also considered. Generally, in the optimization problems, there are many practical cases, in which a small alteration of the data can make the optimal solution virtually infeasible. This phenomenon is named by many words: “Noise”, “Interruption”, “Disruption”, “Perturbation”, and “Disturbance”.   In train timetabling the word “Disturbance” is common to use and is formally defined as follows: Disturbances are mistakes, malfunctions or deviating conditions which occur in the railway system or its environment, and influence the railway traffic. The disturbances are not equal in size, and differ from just a few seconds to several hours or even more. In train timetabling problem, two kinds of delays are investigated: (1) Primary delays which are caused by disturbances and (2) Secondary delays, or knock-on delays, which are caused by delays of earlier trains. Therefore it is concluded that if no primary delay is occurred, no secondary delays we have. By the above definitions, delay propagation is defined as the phenomenon of occurrence a secondary delay. In this case, the delay is propagated from one train to another. 
In practical cases, the minimization of total travel time of trains as the objective function is not enough and the railway mangers search for a robust solution that is capable of absorbing a known level of disturbances on the railway network. A schedule whose performance does not significantly reduce under the condition of disturbance occurrences is called robust. In this paper the robustness of a railway network indicates how much the system is affected by disturbances. By the above definition, the performance of a robust schedule should not be sensitive to disturbances. In other words, when a timetable is not robust, even small disturbances may cause large delays which propagate quickly throughout the trains. 
To prevent the propagation of delays amongst the trains, the time interval amongst the occupation of block sections by trains, called buffer times, needs to be increased. The primary objective of this paper is to present a mathematical model as well as a branch and bound (B&B) algorithm to solve robust train timetabling with the consideration of disturbances in the traveling times. 

During the past decade, the train scheduling problem has become one of the most interesting research topics. Sepehri and Pourseyed-Aghaee [4], presented a Modified B&B algorithm including 4 methods to reach the optimum solution in less time for a single track railway line. Zhou and Zhong [5] have introduced a modified B&B alg. which contains 3 methods to reduce the solution space. B&B algorithms are also presented by Walker, et al., [6]; Zhou and Zhong, [7] and D’Ariano et al., [8]. A new multi objective mathematical model introduced by Ghoseiri et al. They solved the problem in two steps: finding the Pareto frontier and then using distance-based method [1]. Abril et al., [9] have presented some constraint programming techniques to solve a single track timetabling problem. 
Besides exact algorithms, Burdett and Kozan [10] have exhibited a new train timetabling model based on a hybrid job shop scheduling problem which is presented as a disjunctive graph, and then some algorithms are developed for the construction of schedules. Caprara et al. [11] have studied a double track railway line and have presented a heuristic algorithm based on the lagrange relaxation method.  Cacchiani et al. [12] have presented exact and heuristic algorithms for solving the train timetabling problem based on the solution of the LP relaxation of an ILP formulation.  Ghoseiri and Morshedsoluk [13], Jamili and Kianfar [14] Jamili et al., [15] have applied ant colony, simulated annealing and hybrid particle swarm optimization and simulated annealing meta-heuristic algorithms for scheduling trains in single track railway lines respectively. Burdett and Kozan [16] have developed a simulated annealing and local search meta-heuristic algorithm to solve a train timetabling problem in a railway network modeled through a hybrid job shop scheduling problem. Fischetti et al., [17] have exhibited four different methods to find robust solutions that are capable of absorbing as much as possible disturbances on the railway network by combining mixed integer programming, stochastic programming and robust Optimization techniques. The proposed procedure to reach a robust timetable contains two steps: (1) Generating an optimal timetable, (2) Finding robust solution with the assumption of fixed event precedence’s. This approach is presented in more details in [18]. Vromans et al. [19] considered the shared use of the same infrastructure by different railway services, different origins and destinations, different speeds, and different halting patterns, as the main reasons of heterogeneity of the timetables which itself results in  propagation of delays throughout the network. They showed that one way to increase the reliability of the railway system is to create more homogeneous timetables by reducing the running time differences per track section. They presented two heuristic measures for evaluating the heterogeneity of the timetables and for predicting reliability. Then a simulation method is used to show the importance of homogeneity of a timetable.
Carey [20] presented some heuristic measures of stability of train timetables in two different categories including using and not using probability of disturbances. Salido et al. [21] and Shafia and Jamili [22] proposed two indices for measuring the train timetable’s robustness. Vansteenwegen and Oudheusden [23] firstly computed ideal buffer times in connections based on the delay distributions of the arriving trains and the weighting of different types of waiting times. Secondly they used linear programming to construct timetables and a simulation to compare them. Khan and Zhou [24] proposed a two-stage stochastic recourse model for double-track train timetabling problem which considers the travelling time disturbances. It is assumed that the high-speed trains have always priority to medium-speed trains. Their proposed method is based on adding additional time supplements to the travelling times of trains as well as the dwell times in order to achieve a robust timetable. Liebchen, and Stiller [29] mathematically justified the sampling approach for the aperiodic delay resistant timetabling problem. Moreover they proposed two heuristic approaches for the periodic case. Liebchen, et al. [26] studied the construction of delay resistant periodic timetables. Their approach constructs optimal timetables respecting the expectation over all scenarios for a simplified objective function, and then the timetables are evaluated with a limited number of scenarios and an optimal delay management policy. Fischetti, and Monaci, [27] investigated a heuristic way to model uncertainty through a modeling framework called Light Robustness. Light Robustness combines robust optimization with a simplified two-stage stochastic programming approach, based on the introduction of suitable slack variables, which play a role similar to second-stage recourse variables in stochastic programming models. D'Angelo et al. [28] have proposed an algorithm for solving the robust timetabling problem. The algorithm ensures that, if a delay occurs, no more than ∆ activities are influenced by the propagation of such a delay.
Generating  robust  timetables in planning stage may not be enough to absorb all potential disturbances, as a result real-time scheduling, also known as rescheduling might be also applied in practice. Tornquist and Persson [29]; Mazzarello and Ottaviani [30]; Adenso-Diaz et al. [31], and Tornquist [32], have presented heuristic algorithms for the train rescheduling problem in railway networks. Further to robust and real time scheduling a new concept is newly defined, called recoverable robust timetable, [33-34]. The idea is that further to robustness concept during the planning phase, the recovery features that might be applied at runtime must be also considered so that the disturbances can be easily managed.
In this paper, a new formulation for the robust train timetabling problem is presented for the single-track railway networks. The proposed model is capable of absorbing disturbances which are normally happen during the travelling of trains. Generally in the planning stage it is aimed to make the timetable robust against small-size disturbances, while the large-size disturbances are managed by applying real-time timetabling methods. The definition for small-size of disturbances differs from one network to another. Normally the delays less than 5 minutes are considered as small size disturbances. As the common software packages are just able to solve small-size instances in a reasonable amount of time, a Branch & Bound algorithm is proposed to efficiently solve examples with the larger sizes. It is worth noting that in this paper a problem with the size less than scheduling 10 trains in 10 block sections are considered as the small-size problems. We present two novel computational methods to compute the buffer times. The first one is based on the unknown distribution functions of disturbances, and the second one is based on the stochastic behavior of disturbances when the input data are perturbed. Finding optimal solution is not possible in all cases of solving optimization problems. As a result heuristic algorithms are commonly used to find some good solutions which are not guaranteed to be optimal. These kinds of solutions are named “Near optimal solutions”. At the end, a heuristic beam search method, which is the fathom limitations of the branch & bound, is presented to find near optimal solutions in a limited amount of time. It is worth noting that as 
The current paper is organized as follows: the authors present the mathematical model as well as capacity consumption concept in section 2. In section 3 after presenting the robust optimization approach the robust train timetabling model is proposed. In section 4, two novel methods are proposed to compute the required buffer times to reach the desired level of robustness. Section 5 deals with the explanation of the branch and bound (B&B) along with a heuristic beam search algorithm. In section 6 the validity of algorithm as well as its effectiveness is demonstrated and then an Iranian case study is reviewed. Finally, the concluding remarks are given at the end to summarize the contribution of this paper.  

The employed notations throughout the paper are listed in table 1.
Table 1 HERE

II. MATHEMATICAL MODEL
The train timetabling problem is defined as follows: A railway network consists of n block sections with m trains passing the block sections one after another. Given the routes of trains, the block section occupation time of trains, the origins and the destinations, and the importance weight of trains, it is necessary to find the arrival and the departure times of trains to/from block sections, to optimize the desired objective function and ensure all the operational and safety requirements are satisfied. A simple railway network is depicted in Fig. 1. As we can observe, this network contains 10 block sections and 3 trains. Train routes are: TA: 3→ 4→ 5→ 7→ 9→ 10; TB: 1→ 3→ 4→ 6→ 7→ 9→ 10 and TC: 10→ 9→ 8→ 6→ 4→ 3→ 2.  It is worth noting that a sequence number is assigned to each train for passing each of the block sections such that the train with smaller sequence number has a earlier departure time. Moreover, some small potential noises are likely to happen when trains pass the block sections. In classic train timetables, the effects of disturbances are not considered. In such a condition, a small disturbance leads to a delay for a train which itself can cause some delays to other trains known as secondary delays. As a result, by disregarding the robustness characteristic of timetables, a small disturbance can be easily propagated through timetables. 

FIG. 1 HERE

The proposed mathematical model is presented in the following subsection.
A. Mathematical model
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The objective function shown in Eq. 1 minimizes the sum of weighted arrival times of trains to their destinations.

Subject to:
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Eq. 2 ensures that just one sequence is assigned to train i in passing block section j.
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Eq. 3 guarantees that at most one train can pass block section j in sequence s. 
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(4)                   

Inequality 4 establishes the relation of 
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Inequality 5 ensures that the departure time of trains from their origins cannot be earlier than one that is pre-determined. 
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where j´ is the block section which is met by train i after block section j. Inequality 6 provides the condition that trains must pass block sections one after another based on the predetermined routes. 
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Inequality 7 ensures that the occupation time of train i in block section j cannot be more than a threshold.  This constraint is vital for passenger trains. In other words, in a busy rail network in which the used capacity is near to its final limit, trains may have to stop in stations until the next block section becomes empty. In this condition, it is very time consuming and frustrating for passengers to stop in a station for a long period of time without any acceptable reason. 
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Inequality 8 guarantees that the total delays of a specific train cannot be more than a threshold. By this inequality it is intended to generate smooth timetables in which all trains with the same characteristics have similar travelling times. 
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(9)

Inequality 9 provides the safety movements in passing block sections. In other words, train k with sequence no. s+1 can only enter block section j if train i with sequence no. s has left the block section. This inequality provides a 2-aspect block-signaling system. Two-aspect signaling system contains two lamps one is green and the other is red. The green lamp indicates clear (the proceed indication), and the red lamp displaying the most restrictive indication.
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Remark 1: The above problem can be also formulated in such a form that the distinct index for presenting the sequence of trains in block sections is disregarded. In other words, indeed one can formulate the defined problem in a way that the variable 
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[image: image27.wmf]ij

dep

, and therefore the number of variables will considerably reduce, for example Sepehri and Pourseyed-Aghaee [4] and Jamili and Kianfar [18]. However, the main reason for such formulation is illustrated in applying a robust approach to the model introduced in the next section, where the order of trains passing the block sections as well as the existing time interval among them, are used  to compute the required buffer times, in the mathematical model.
Remark 2: The above defined formulation is applied for scheduling trains in a micro level; however it could be used for macro level, as well. In other words, beside the above definition and the railway network shown in Fig. 1, the proposed mathematical model are also applied for the problem of scheduling m trains on a simple single-track railway line which consists of n stations connected by n-1 block sections. Fig. 2 shows a simple part of such railway lines which contains 4 block sections that connect 5 stations. These kinds of railway lines exist in many different countries.

FIG. 2 HERE

For this purpose, i.e. solving the problem in the macro level, constraints 6 and 7 must be modified to 12 and 13. 
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To further illustrate the issue, it is worth noting that, in the micro level, we intend to schedule trains considering all details. The details contain the performance of signals and the routes of trains in stations. In other words, in micro level, we have assumed that the routes of trains are fixed. On the other hand, in macro level, the details are not fully considered, and therefore the computation time considerably reduces. 
In macro level formulation, as the stations are considered as black boxes, there exists the risk of violating the available lines inside the stations. To illustrate the case it is worth noting that, each station contains a limited number of internal lines which are assigned to different routes. The number of trains with similar route which simultaneously stop in a station could not exceed the maximum available, i.e. 
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FIG. 3 HERE

In the macro case, the routes of trains through stations can be determined, in the second stage based on the scheduling data provided by the generated timetables. 
Constraints 14,15, and 16 are proposed to formulate the maximum station capacity constraint.
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Constraint 14 specifies that if train i passes block section j before train k then 
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Constraint 15 indicates that if train i passes block section j before train k, and train i meets train k in the station after block section j, then 
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  Note that 
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indicates the number of trains which are similar to train i respecting their routes in block section j, i.e. l, and passes block section j before train i, and also meets train i in the station located after block section j. therefore three different cases are likely to happen: (1) 
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, then the constraint 16 will be inactive since by the entrance of train i to the station located after block section j, there will be an empty line for stopping purpose. (2) 
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 , then train i must pass the station located after j, with no stop, i.e. 
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, which result an infeasible case. 
B. Capacity Consumption
An efficient utilization of the railway infrastructure is an essential component of a high-quality transportation system. Theoretical capacity is defined as the number of trains that could run over a railway line, during a specific amount of time, in a strict mathematically generated environment. Moreover practical capacity is calculated under more realistic assumptions, where the minimum desired robustness is considered for providing smooth and robust train running. Fig. 4 shows the above definitions.

FIG. 4 HERE

As depicted in Fig. 4, by increasing the desired robustness level, the practical capacity reduces. On the other hand as earlier specified, constraints 7 & 8 define the minimum thresholds to maintain the passengers’ satisfactory. Therefore the capacity utilization, i.e. the number of trains going to be scheduled, could be increased to that much, a certain level of robustness, and a certain level of passengers’ satisfactory, are provided. 
In the next section, after a brief explanation of a robust approach, we expand to the proposed model to arrive at a robust train timetabling mathematical model.

III. ROBUST TRAIN TIMETABLING MODEL
A typical optimization problem may contain a variety of input parameters. When some input parameters are contaminated with disturbances, a method is required to guarantee that a small amount of alteration on input data will not violate the constraints. Generally, robust optimization ensures the feasibility and the optimality of the solution for the worst-case values of parameters. In this case we accept a suboptimal solution for the nominal values of the data in order to be sure that the solution remains feasible when the data changes. Soyster [35], Ben-Tal and Nemirovski [36, 37, 38], El Ghaoui and Lebret [39], and El Ghaoui et al, [40] have applied robust optimization to linear programming problems. Bertsimas and Sim [41] introduced a robust approach where the robust counterpart is of the same size and class as the nominal problem. i.e., if the nominal problem is linear/mixed integer, the final robust model will remain  the same shape. By this approach it is possible to control the degree of conservatism for every constraint and the feasibility of the robust optimization problem is guaranteed. Considering the advantages of the Bertsimas and Sim method, the authors have used this idea for the mathematical model presented in section 2. For details of Bertsimas and Sim approach, the reader is referred to [34]. Shafia et al., [2] have applied the Bertsimas and Sim robust approach to the problem of train routing and makeup.

In the remaining part of this section the authors have applied the introduced robust approach to the presented train timetabling model. In a timetabling problem, disturbances affects the block section occupation times. By this explanation, it is required to study those constraints which contain block section occupation times, tij, as the input parameter, i.e. inequalities 6 and 9. In this paper we apply the Bertsimas and Sim robust optimization approach on inequality 9, and the results can be extended to inequality 6 as well. Fig. 3 depicts block section j and three trains which have passed the block section based on a particular sequence. For this part of the timetable inequality 9 results in the following constraints: 
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FIG. 5 HERE
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 in Fig. 5 indicates the s-th existing buffer time in block section j. The aim is to find the necessary buffer times to absorb the disturbances. In Fig. 5, the departure time of train b may be affected by the potential disturbance on passing block section j by train a. The condition is different for train c. This train is not only affected by possible delays of train b, but also non absorbed delays of train a may cause more delays for train c. Applying the Bertsimas and Sim robust approach leads to embed some buffer times in each constraint, e.g. constraints 17, and 18. The amount of buffer times is dependent on the uncertain parameters exist in the studied constraint. Constraint 17 contains uncertain parameter[image: image52.png]


 and therefore the required buffer time between trains a, and b is computed based on the uncertain parameter[image: image54.png]


. Similarly constraint 18 contains only uncertain parameter[image: image56.png]


, and therefore the potential effect of non-absorbed delay of parameter[image: image58.png]


 is not considered in computing the required buffer time.
In order to reduce the effects of potential delay propagation among the trains, the relative position of all trains must be considered. In the next section, this fact is proved considering the stochastic behavior of disturbances. It is concluded that to apply the robust optimization approach, beside constraints 17 and 18, the following constraint must be also considered, such that train c is protected against possible disturbances of  train a during passing block section j.
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By the above explanations, at the first step, inequality 9 must be extended to inequality 20, so that for each block section, a constraint corresponds to each pair of train sequences, e.g. s´, and s.
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It can be found that inequality 20 results in generating 
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In the next step based on the Bertsimas and Sim approach, the authors propose the robust train timetabling model. For the details of this approach, the interested reader can refer to [41]. As we have already explained, the disturbances normally happen in block section occupation times of trains. It is assumed that each uncertain coefficient 
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In the Soyster approach [35], it is supposed that all uncertain parameters take the worst possible values. This approach results in achieving the highest protection, but the objective function is determined in the worst-case condition. In real-world applications, it is unlikely to suppose that all uncertain parameters are equal to their worst case bound, as a result, the parameter
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are perturbed in practice. Finally, based on the Bertsimas and Sim approach, the robust formulation of inequality 20 is achieved by simply adding the following statement, known as a protection function, to its left-side.
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By this alteration the resulting robust constraint would be non-linear. In the next step the defined protection function is restated as model 21.
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The dual of model 21 is shown as model 22.  Note that 
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Finally instead of using the non-linear robust constraint achieved by embedding the proposed protection function to the left side of inequality 20, one can use linear constraints 23-26, which are achieved through combining model 22 and inequality 20. For more details the reader is referred to [41].
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The role of 
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 is to adjust the robustness against the level of conservatism of the solution. Considering block section j and trains with the sequence numbers[image: image104.png]


, the constraints 23-26 provide the condition that if 
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 trains are affected by disturbances the timetable remains robust by a probability of 100%.  We have experimentally proposed index:
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are set according to the desired level of robustness. Simply by increasing the value of these parameters, the resulted timetable will be more robust. By adjusting   
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Solving the mathematical model by common software packages such as LINGO, CPLEX or GAMS, is very time-consuming for even solving small-size instances. Furthermore these software packages are not capable of solving large size instances in a reasonable amount of time. Thus, in order to have a more powerful tool to generate robust train timetables, a B&B algorithm is proposed. Before presenting the B&B algorithm, in the next section, we show how the required buffer times are computed in order to reach a known level of robustness. Then in section V, the proposed methods are used in the B&B algorithm.

IV. COMPUTATION OF BUFFER TIMES
In order to have a timetable which is benefited by a known level of robustness, two methods are presented to compute the required amount of buffer times. Generally the amounts of buffer times are directly dependent to the desired level of robustness. The authors in order to control the robustness propose some indices in the next sub-sections. A good index is the one which is easy to tune, easy to compute and also has the best robustness effects.
C. First Method

The first method relies on the same assumptions considered in the presented robust mathematical model. To that end, each buffer time can be computed by the proposed protection function. 
D. Second Method

In the first method, it was assumed that there is no information about the distribution function of disturbances. However finding an adequate distribution function seems to be impossible due to a lack of categorized data to primary and secondary delays, a good estimation by experts can be invaluable. The second method is concerned with the known distributions of disturbances. In this method to reach the desired level of robustness, the minimum required buffer times between each pair of consecutive events (i.e. departures/ arrivals) are computed such that a robustness index is fulfilled. The robustness index is designed such that the desired level of robustness can be easily adjusted based on the railway decision makers’ comments. The employed notations for computing the amount of buffer times are as follows: 
For simplicity, throughout the paper, it is assumed that trains’ numbers equal their sequence numbers in passing block section j, i.e. the index “i” can be substituted for “s” in all above notations and vice versa. 

As previously stated, the solution for increasing the robustness of timetables is to augment the buffer times. The amount of buffer times must be proportional to the amount of uncertainty as well as the possibility of delay propagation amongst the trains. The former case is dependent on the type of trains as well as the characteristics of the block sections. The latter one in contrast with the first case is varied based on the timetable. In other words the amount of buffer times must be determined based on a constant parameter, the characteristics of trains and block sections, and a variable which shows the possibility of delay propagation in the timetable.

It is obvious that as trains which pass a certain block section are scheduled more tightly to each other, the possibility of delay propagation increases in the case of disturbance occurrence. To illustrate the issue consider Fig. 7 and 8. These figures depict two different schedules for five trains in block section j as well as 4 buffer times which exist among them. 
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By comparing Fig. 7 with Fig. 8, one can see that 
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As it is depicted in Fig. 9, one can find that 
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where, 
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Proposition 1: Consider block section j in Fig. 9. By the assumption of equal pdf for disturbance occurrence and also equal amount of buffer times, e.g. 
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Proof:

Based on equation 27 and considering the above mentioned assumptions, since 
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By proposition 1, it can be concluded that considering the counted assumptions, to achieve a robust timetable, generally
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The authors propose index 28, in order to measure the robustness level of timetables.
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where, 
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Proposition 2: To achieve a timetable such that its robustness covers inequality 28, 
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 must be found based on the following model.

(Model P1)
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Proof: Based on index 28, 
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 one intends to find the minimum required buffer times such that 
[image: image149.wmf](

)

l

h

<

>

ijl

T

P

or in other words: 
[image: image150.wmf](

)

l

h

e

<

÷

ø

ö

ç

è

æ

>

-

å

-

=

-

-

1

1

,

,

l

k

j

k

i

j

k

i

b

P
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Remark 3. In practical applications, a moving train must decelerate before becoming stationary and similarly from a stationary position a train must accelerate to reach its regular travelling speed. Therefore in the specified conditions acceleration and declaration times significantly affect the running times. In this paper we have disregarded these effects and as a result, the required computed buffer times may cause trains to be stopped for just a few seconds in order to reach the supposed robustness level. In this case one can assume if a moving train must dwell less than a threshold to fulfill the desired robustness, then the stopping process can be ignored to prevent unnecessary time loss. It is necessary to restate that this negligence does not affect the robustness level of next trains which are to pass the same block section due to the fact that the minimum required buffer times are computed based on the previous existing actual buffer times (model 29).  

Remark 4. The distribution functions of disturbances dynamically change depending on their position on the time table. To illustrate the issue consider Fig. 10 and 11.
FIG. 10 HERE

FIG. 11 HERE

By comparing the travel path of train 3 in Fig. 10 with the one in Fig.11, it can be found that the nonstop travel of train 3 in block sections z and y in Fig. 11 affects the potential disturbance of this train in passing block section y, and one can conclude that 
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. By this explanation, it is understood that finding the exact distribution functions of disturbances is not an easy task especially in large-scale timetables. In this paper in order to have a good approximation of computing buffer times, we neglect the effect of remained non-absorbed disturbances, e.g. the impact of 
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Proposition 3: By the assumption of considering equal exponential distributions for disturbances with rate parameter
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, the constraint of model 29 can be substituted for inequality 30.


[image: image163.wmf]l

h

q

h

q

<

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

å

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

´

å

å

-

=

-

-

=

-

+

-

=

÷

ø

ö

ç

è

æ

å

+

´

-

-

=

-

1

1

,

1

1

,

2

0

1

1

1

,

!

1

l

k

j

k

i

l

k

j

k

i

nst

l

m

b

m

l

k

j

k

i

e

m

b







(30)

Proof: The result immediately follows form considering the fact that the sum of k independent exponentially distributed random variables, each of which has a mean of θ is a gamma distribution with scale parameter θ and a shape parameter k. (
For the general case where the parameters of exponential variables are different, their summation is not easy to compute.  Favaro, and Walker [42] presented an approach to compute the distribution of the sum of independent exponential random variables with non-equal parameters. 
Note that, in order to reach a practical robust timetable, the authors recommend the use of 
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 to consider the effect of cumulative disturbances of a train resulted by passing a number of block sections without any stops.

Remark 5. It is worth noting that the min and max amount of buffer times for both proposed methods are completely dependent on the amount of disturbances, the position of trains in passing block sections, and the amount of the defined protection function for the first method, and the robustness index, i.e. inequality 28, for the second method. Moreover the distribution of buffer times amongst the timetable is carried out by the proposed algorithms presented at the next section, such that the desired robustness level is achieved, and at the same time minimum total travel times of trains is resulted. 
V. THE PROPOSED BRANCH & BOUND ALGORITHM
In this section by using the above proposed methods which are to compute the required buffer times, a branch and bound algorithm is introduced. Use of B&B algorithms is well experienced in research related to the field of scheduling [4-8]. The proposed B&B algorithm generates all the active schedules. A feasible schedule is the one which satisfies all defined constraints. A feasible schedule is called active if no train can be scheduled earlier by altering the train sequences on block sections and not delaying any other trains.

The nodes of the branching tree are corresponding to the partial schedules. Each node is associated with a particular set, shown by [image: image166.png]


. This set contains the next block sections that are to be passed by each of trains which have not reached their destinations. If the set related to one of the nodes is empty then this node is at the bottom of the tree and represents a complete schedule which cannot be branched any more. Moreover an active node list is defined which is updated in each step of the algorithm and contains all active nodes which have the possibility of branching. Whenever this node is empty then the algorithm is terminated. 
The proposed B&B algorithm for the robust train timetabling problem is as follows:

Step 1: (Initial Condition)

Consider initial node, ν, as the first transit doublet which could potentially starts earlier than others.
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Select the initial node, ν, to be branched.

Step 2: (Block Section Selection)
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Based on the actual values for [image: image200.png]
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, compute the minimum required buffer time,[image: image204.png]
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Step 3: (Branching)
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, generate a new node beneath node ν. For each new node, ν´, Let:

Transfer all data which exists in node ν to node ν´. Furthermore consider following alterations:
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where, i* is the selected train correspondence with the node ν´.  
where, j´ is the next block section which should be met by train i* after j*.

Step 4: (Fathoming Nodes)

Compute the lower bound based on the LB generating method for each new node ν´. Fathom the new node ν´, if the fathoming condition is satisfied. Update the ANL.

Step 5: (Node Selection)

If [image: image243.png]


 is empty, i.e. a new schedule is achieved, update the upper bound if it is necessary. If ANL is empty then the algorithm is terminated, Return the best found timetable, else select one of the active nodes which belongs to the ANL on the basis of the first node selection rule. 

If [image: image245.png]


 is not empty, select one of the newly generated nodes based on the second node selection rule.

Go to step 2.

The first step addresses the characteristics of the initial node.  In step 2, the block section which corresponds with the earliest calculated arrival time is recognized for the selected node. Note that in this step the minimum required buffer time is computed and is used in calculating the arrival times. In step 3, the selected node is branched and the active node list is updated. Step 4 specifies the fathoming condition and step 5 is to select the next node to be branched.

E. Fast Lower Bound Computing

For each node a lower bound (LB) is computed. If the LB is greater than or equal to the UB, then the descendants of the corresponding node are eliminated. 
The lower bound in the node [image: image247.png]


are computed using followings:
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 is the block section which is met by train i* before [image: image254.png]


.
In other words the LB is generated in two stages: (1) Updating the TWT and (2) Adding all travelling times to the TWT. It is necessary to restate that the objective function is to minimize the total traveling times of trains. However the proposed LB is not strong, but it could be easily computed. A stronger LB is proposed in the subsection E.
F. Node Selection Rules

The first rule is as follows:

Amongst the new generated nodes, each two nodes are compared based on the following pair-wise comparison method: 

· If [image: image256.png]Wi, = wp,
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 then the node correspondence with train i1 dominates the one relates to i2.
· If [image: image260.png]Wi, = wp,
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 then the node correspondence with train i1 dominates the one relates to i2 if the following inequality is satisfied.
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The second rule is as follows:

Whenever a new schedule is generated, the next node is selected based on the First In First Served rule, FIFS.
G. Fathoming Condition


The following fathoming conditions are applied in the proposed B&B algorithm.

· If LBν >UB then node ν must be fathomed

· If in a branching step, two or more trains with completely same characteristics, including the direction, the importance weight, the destination, the pre-determined dwell times, and the travelling times, are competing for the next block section, the one, which passed the previous block section sooner, has always priority to the other ones, and therefore the related nodes can be fathomed.

H. Heuristic Beam Search Algorithm

The train timetabling problem is known to be NP-hard [43, 44], and therefore optimal solutions are unattainable in real large-scale instances, in a rational amount of time.

In order to find a near optimum solution for large-scale problems in a limited amount of time, the following fathoming conditions are proposed:

· In the branching step, one can redefine [image: image265.png]2, < {(i.j*) € 2,|dep- <p x ma,}



 where p is called first severity parameter.

· The number of branches in each node, nb, could not exceed a threshold.

· The quantity of transit doublets which should be scheduled in a timetable equals to
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doublets are remained. In this case if following condition holds, node ν is fathomed.

LBν >(1- q× 
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)×UB , where q is called second severity parameter and must be 0<q<1. The value of parameter q addresses the tradeoff between finding better solutions and required running time to achieve the final solution. If q is set equal to 0 then the algorithm tries to check all nodes and therefore a better solution is likely to be found, while the required amount of solving time will increase substantially. Generally in tight timetables, the authors recommend selecting large numbers for parameter q.

By employing some randomly generated instances, it is observed that the combination of Nb=2 and p=9 results in statistically better output than other evaluated combinations

I. Strong Lower Bound Computing

The commonly used lower bound technique in job shop scheduling problem is to relaxing the problem into a single machine problem. In this paper we have presented a stronger LB, based on decomposition of the main problem into n distinct problems. Each derived problem is then solved by the proposed B&B. In the first problem the origin departure times are recomputed. For example consider a problem of scheduling k trains in 4 block sections. The problem is first decomposed into n=2 distinct problems. Assume that the first problem contains block sections 1 and 2. Furthermore suppose that the route of train 1 is 4→3→2→1. In this example the new origin departure time of train 1 equal to: od1+t14+t13. The other n-1 remained problems are solved under the assumption of relaxing origin departure times, i.e. constraint 5.
VI. VALIDITY OF ALGORITHM
To check the validity of the proposed B&B algorithm, the introduced robust train timetabling model is coded in Lingo. Table 2 shows the comparison results amongst the proposed B&B algorithm coded in Visual Basic, the proposed heuristic beam search, and the Lingo outputs. In order to compare the outcomes of the solving methods, it is assumed that 
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, and also the buffer times in B&B algorithm is based on the first method introduced in section V. This table contains the outcome of different algorithms for twenty randomly generated instances. In all instances, it is supposed that all trains pass all block sections one after another. A time interval equal to 20 minutes is considered among departure times of trains from their origins. N-n-t, N-s-t, and N-b-s stand for Number of Northern Trains, Number of Southern Trains, and Number of Block-Sections, respectively

TABLE 2 HERE
The results prove that the proposed B&B is capable to solve all instances faster than the lingo software package in all solved instances. There are cases where the software package cannot solve some problems, the branch & bound may fail on others. However, the beam search can easily solve all problems reaching a good feasible solution. The results demonstrate the efficiency of proposed BS algorithm in finding near optimal solutions in a reasonable amount of time. The reported LBs where the optimum solution does not exist are based on the strong method described in previous section. To that end, each problem is decomposed to three smaller problems. In other words, the railway network is separated into three parts. The first part contains the most crowded section of the problem in a size that could be solved by the B&B algorithm. As it is explained for the first small problem, the origin departure times are re-computed, while the remained problems are solved by the assumption of relaxing constraint 5. The last column specifies the gap between BS and the best found LBs. The reported CPU time in table 2 is achieved by a Pentium IV Laptop with an Intel Core 2 Duo processor running at 2.53GHz and 2GB of RAM memory.

In order to demonstrate the effectiveness of the proposed method for computing buffer times, an instance consists of a single-track railway line including 11 stations, and therefore 10 block sections, and 10 trains, 5 for each direction, is considered. The origin departure times for each direction are fixed as 0, 30, 60, 90 and 120. The travelling times are randomly generated from an interval [10, 20]. It is assumed that all disturbances have exponential distributions with parameter θ=2 minutes for all trains. It is also supposed that η=3 minutes, in other words one intends to find timetables where the robustness level fulfills the condition 
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 for all sequences of all block sections. The optimum TWT for three cases including (1) not robust, i.e. λ=1.0, (2) λ=0.9, and (3) λ=0.1, equal to 135, 171, and 242, respectively. The computed buffer times are reported in Table 3. Note that the sequence of trains in case 3, have been differed from case 1 and 2. In other words, the meet-pass plan of trains, i.e. the sequence of trains in passing the block sections, changes considering different robustness level. Moreover the average capacity consumption of block sections for the studied cases equal to: 262, 273, and 279 minutes, respectively. 
TABLE 3 HERE

It is worth noting that the determination of desired robustness level not only depends on the conditions of rolling stocks and railway infrastructures, but also depends on the cultural points as well the amount of punctuality desired by the passengers. To further investigate the relation amongst the optimality, robustness and capacity consumption, five instances have been randomly generated. The results are shown in Table 4. The outcomes demonstrate that by increasing the desired robustness level, as it could be expected, the optimality reduces while the capacity consumption increases.

TABLE 4 HERE

In this paper, the authors consider a real case study including the Tehran-Isfahan Railway line which connects two of the most populated cities of Iran. This line is a single-track railway which consists of 19 stations and therefore as stated in remark 2, the number of block sections equals to 18. It is supposed that there exists two freight and 8 passenger trains which travel in north direction and in the same amount southern trains. Therefore the problem consists of scheduling 20 different trains along eighteen block sections. It is also assumed that the travelling times of freight trains are 1.5 times more than passenger trains. A time interval equals 90-minutes are considered amongst the origin departure times of trains. The importance weights of passenger trains are twice the freight trains. Moreover the authors have considered
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 equal to 45 and 90 minutes for passenger and freight trains, respectively.

The second method in computation of buffer times is considered. Based on the experiments of railway experts, the disturbances have exponential distributions with parameter θ=45 seconds for passenger trains. Moreover it is experimentally known that the freight trains are subjected to disturbance about twice more than passenger ones, and therefore in order to utilize the outcomes of preposition 3, the authors have considered same distributions for freight trains and have simply multiplied the computed required buffer times by two. Finally it is intended to find a timetable where 
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 for all sequences of all block sections. Obviously considering the size of the problem, it cannot be solved by the exact B&B algorithm, therefore we have solved the problem by the BS algorithm. Based on all above assumptions, the achieved objective function values of the case study are reported in table 4 for different amount of λ all after 30000 iterations, each of which takes approximately 30 seconds to be terminated. 

TABLE 4 HERE
The best found timetable is depicted in Fig. 12.  

FIG. 12 HERE
As it is shown in Fig. 12, the proposed timetable is feasible for all cases of assigning one or more lines to each route in every station. Furthermore the capacity consumption is increased by around 2%, in the robust version. However as we have stated in section 2, the concept of robustness is vital for computing the practical capacity. In other words, by generating a robust timetable through adding some buffer times, we do not lose any capacity, but we accurate the real practical capacity which exists. As it is depicted trains numbered 1, 2, 11 and 12 are considered as freight trains. The critical block section of this line is the one between Badroud and Spidan stations, which takes 32 and 30 minutes for southern and northern passenger trains, respectively.

VII. CONCLUSION
A robust train timetabling model is proposed in this paper which has the capability of handling the disturbances which exists amongst traveling times. It is discussed that, in many real world train timetabling problems, a small change in input parameters not only results to having a non-optimal solution, but also to the feasibility of final solution. The proposed mathematical model could guarantee that, a small change in input parameters does not have any effect in feasibility and the optimal solution of the robust one. The tradeoff amongst the optimality, robustness and the capacity consumption is discussed. Besides that, a branch and bound algorithm is proposed which is able to solve problems, much faster than lingo software. In order to guarantee the robustness of proposed B&B algorithm, the required buffer times amongst the train departure and arrival times are calculated by proposing two methods which are under the assumption of known and unknown distribution functions of disturbances, distinctively. A beam search is also introduced to solve the large-scale problems. The BS could achieve the optimum solutions in the investigated instances which the optimum is known. Moreover it is shown that use of B&B algorithm leads to 96% reduction in run time, while BS could found optimum solution with 99% reduction of run time in comparison with Lingo software package. The implementation of the proposed algorithm is shown as a proof of the effectiveness of the new approach, using some numerical examples as well as an Iranian case study. It is shown that the TWT in the case study worsen up to 50% for the case of generating robust timetables, while the capacity consumption increases about 2% in average. Finally the experimental results show that the proposed algorithms are effectively reduced the run time. Moreover the proposed method to compute the buffer times and the introduced robustness indices are well designed to be easily tuned so that the desired robustness level of railway decision makers can be easily addressed.
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