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Abstract: Train formation planning models determine the routing and frequency of trains and
assign the wagons to trains. In this article, a new robust mixed integer model for the train forma-
tion problems is proposed where the input data are subject to uncertainty. The optimal solution of
the proposed model of this article is believed to be difficult to determine and a heuristic approach
to find the near-optimal solution is presented. The implementation of the proposed model of this
article is demonstrated for a real-world case study and the results are discussed.
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1 INTRODUCTION

Freight train formation is one of the most important
research areas in transportation planning. The train
formation planning (TFP) models are often formu-
lated as a mixed integer problem and the optimal
solution is normally difficult to find. Practically, one
may use trial and error to find a practical solution and
this could increase the cost of transportation signif-
icantly. On the other hand, there are many practical
cases where the exact value for the system’s informa-
tion is not accessible and, even if the optimal solution
exists, a small change in data could make the optimal
solution virtually infeasible. The primary objective of
this article is to present a mathematical model to solve
TFP by considering noise in the input data. The pro-
posed model of the article is formulated as a mixed
integer non-linear problem where the input data are
subject to uncertainty. It has been explained that the
resulting model involves a large number of binary vari-
ables and the optimal solution cannot be found in
a reasonable amount of time. Therefore, a heuristic
approach is presented in order to locate a near-optimal
solution.

Based on the survey conducted by Cordeau et al.
[1], the TFP, sometimes called the routing and makeup
problem (RMP), is a subclass of network routing
problems. The other subclasses are the blocking
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problem and compound routing and scheduling prob-
lems. The TFP can also be named as the RMP where
the frequency of trains and the assignment of blocks
to trains are determined. Furthermore, the blocking
policy may either be determined endogenously or
be given as an input (see, for example, Thomet [2]).
Crainic et al. [3] proposed a model and a heuristic
for tactical planning. The model is non-linear, mixed
integer programming (MIP), which minimizes the
operating and delay costs. Keaton [4] presented an MIP
model and a heuristic method based on Lagrangian
relaxation [5]. Lin [6] also presented an implicit enu-
meration algorithm with ε-optimality to solve the TFP
model. Marin and Salmeron [7, 8] proposed a local
search heuristic for the tactical design of rail freight
networks where the objective was to minimize the
operating and time costs. Morlok and Peterson [9]
introduced a linear MIP model and applied it to a
very small instance where the optimal solutions were
found using the branch and bound procedure. Huntley
et al. [10] presented a non-linear MIP model with an
adaptation of simulated annealing to locate a near-
optimal solution. Gorman [11] offered an application
of genetic and tabu searches for the same prob-
lem. Finally, Godwin et al [12] presented a heuristic
approach for this problem.

This article is organized as follows. First, the neces-
sary definitions are presented in section 2. Section 3
presents the mathematical formulation of the prob-
lem and the robust TFP is explained in section 4.
Section 5 is devoted to a heuristic and a case study
for an Iranian transportation problem. Finally, the
concluding remarks are given at the end to summarize
the contribution of this article.
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2 PROBLEM DEFINITION

A railway is considered as a directed graph G(N , A),
consisting of shunting yards as nodes n ∈ N and paths,
and the distances between shunting yards as arcs
a ∈ A, which are shown by doublets a = (n1, n2) where
n1, n2 ∈ N . In the railway network, there are some
compartments transported by trains from their ori-
gins to their destinations. Each compartment may be
divided into some subsets of wagons so that each sub-
set could be assigned to a certain train. The subsets
are sometimes called blocks. The problem is to form
the required kinds of trains to transport all wagons of
compartments. The primary constraints are the max-
imum length and tonnage of trains in each path and
the objective is to minimize the cost of transportation.

There are different objectives involved in our pro-
posed model such as the costs related to train forma-
tion, wagon classification works in shunting yards, and
idle time of wagons waiting for trains in yards, which
are discussed in the next section.

In this article, two kinds of trains are considered:
trains with one locomotive, called short trains, and
trains with two locomotives, called long trains. Gen-
erally, forming trains with more than two locomotives
is not recommended in many countries such as Iran
[13] and is not considered in this article. The length
of the trains is dependent on the hauling power of the
locomotives and the topography of the paths. In other
words, since the hauling power is always constant, the
maximum wagons that can be hauled by a specific
train are directly related to the steepest gradient of the
path. In addition, every station has a limited length so
that the length of the formed train cannot exceed this
limit. In real-world applications, the mean weight of
each wagon and also the number of wagons for each
compartment are subject to disturbances, and as a
result, in practice, it may be different from the amount
considered in the planning stage. In this situation, the
pre-organized plan may be neither infeasible nor opti-
mum any more. A practical approach is to consider
an empty space for each train. A more sophisticated
approach for an optimal allocation of the spaces is
explained.

3 THE MODEL

The following assumptions are considered through
this article.

1. There is no limit for the classification works in
shunting yards.

2. Long trains have the ability of moving twice the
number of wagons moved by short trains. In other
words, if a short train can move n wagons, then a
long train can transport 2 × n wagons.

Fig. 1 Yards numbering

3. Yards are numbered such that the numbers increase
in the train movement direction. Fig. 1 shows two
different numberings.

4. Two different assumptions are considered in the
case of arriving trains at stations. The simpler one
is that there is a tight and accurate timetable for all
trains that arrive at stations. The other one is that
the arrival of freight trains to stations is unknown
but is based on a given stochastic distribution.

3.1 Notations

Appendix 1 summarizes the necessary notations
needed for our proposed model.

As explained, the proposed model of this article con-
siders three objective functions that are discussed in
the following subsections.

3.2 Minimizing the train formation cost

This cost consists of train personnel wages (includ-
ing the locomotive driver, the locomotive driver’s
assistant, the repairman, and the train chief), the
consumed oil and gasoline, and the amortization of
the locomotive. Equation (1) indicates this objective
function. Note that (1 − ti) = 1 if train i is a short one.

D1 =
∑
i∈T

∑
j∈N

∑
k∈N

{
csjk × [

ai,(j,k) × (1 − ti)
]

+ cljk

(
ai,(j,k) × ti

)}
(1)

3.3 Minimizing wagon classifications works cost

Classification works in shunting yards contain sep-
arating and connecting wagons to/from trains and
increase the cost of transportation which is depen-
dent on the quantity of the classified wagons. In
addition, there are some fixed costs associated with
classification works which are as follows.

1. A fixed cost for trains that stop in yards for classifi-
cation operations.

2. A fixed cost for the number of blocks assigned to
each train.

Note that any compartment can be divided into
various blocks with a different number of wagons
and each block is assigned to an individual train. As
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the number of blocks assigned to a train increases,
classification works in shunting yards become more
complicated.

Classification works are divided into two categories:
first, those works that are related to all compart-
ments in their origins and destinations that equally
appear in all feasible solutions and therefore can be
ignored, and second, the classification works that
are done in the middle yards (i.e. yards between
the origin and the destination of compartments).
Equation (2) shows the formulation of the second
objective

D2 =
∑
i∈T

∑
p∈P

dep−1∑
k=orp+1

cck ×
∣∣∣∣∣∣

k−1∑
j=orp

yp
i(j,k)

−
dep∑

h=k+1

yp
i(k,h)

∣∣∣∣∣∣
+
∑
i∈T

∑
k∈N

ctk × Sik

+
∑
i∈T

∑
p∈P

dep−1∑
k=orp

dep∑
h=j+1

(
cbk × bp

i(k,h)

)
(2)

where
∑k−1

j=orp
yp

i(j,k)
is the number of wagons of com-

partment p transported by train i to yard k and∑dep

h=k+1 yp
i(k,h)

is the number of wagons of compart-
ment p in yard k transported to the next yard by
train i.

If in yard k, no wagons of compartment p are
disconnected from train i

k−1∑
j=orp

yp
i(j,k)

−
dep∑

h=k+1

yp
i(k,h)

= 0

else

k−1∑
j=orp

yp
i(j,k)

−
dep∑

h=k+1

yp
i(k,h)

�= 0

Therefore∣∣∣∣∣∣
k−1∑

j=orp

yp
i(j,k)

−
dep∑

h=k+1

yp
i(k,h)

∣∣∣∣∣∣
indicates the number of disconnecting and connect-
ing works of wagons of compartment p to/from train i
in yard k.

Note that the trains and compartments can pass
any arc based on the third assumption (i.e. the begin-
ning node must have a lower number than the end
node). As a result of the above-mentioned fact, further
to railway lines, railway networks can also be stud-
ied under the condition of the third assumption. In
other words, to study a railway network, one must
assign numbers to shunting yards such that the begin-
ning node of each arc has a smaller number than the
end node.

3.4 Minimizing the cost of idle time of wagons in
shunting yards waiting for trains

The RMP class problems are not involved with
scheduling trains and wagons. Moreover, as stated
before, two different assumptions regarding the arrival
time of trains at stations are considered. The first
one is that freight trains are moved on the basis of
an accurate timetable generated after determining
the train routings. In this case, there is no idle time
and this objective function can be disregarded. There
is also the other case where there is no timetable
for the freight trains entering into each station and
the entrance is considered to have a Poisson dis-
tribution. In order to understand each component
of the objective function, each is explained sepa-
rately. The number of wagons that must wait in yard
k for the arrival of already formed trains to ship
to the next yards is computed on the basis of the
following

∑
i∈T

∑
p∈P

⎧⎨
⎩max

⎡
⎣
⎛
⎝ dep∑

h=k+1

yp
i(k,h)

−
k−1∑

j=orp

yp
i(j,k)

⎞
⎠ , 0

⎤
⎦× Sik

⎫⎬
⎭

Proposition 1

The expected entrance time of kth train to yard j during
a one-day operation is k/

∑
i∈T Sij , which means that it

takes place at k/
∑

i∈T Sij × 24 o’clock.

Proof

Since the arrival time schedule has Poisson distribu-
tion, the interval time is also considered to have an
exponential distribution. The sum of k exponentially
distributed arrival times of trains to yard j has a gamma
distribution with a scale parameter n = ∑

i∈T Sij and a
shape parameter k. Therefore, the expected entrance
time of kth train to yard j is equal to the mean of the
gamma distribution, where n is the number of pre-
formed trains arriving at yard j during the one-day
operation.

Proposition 2

Let n be the number of trains arriving to yard j dur-
ing a one-day operation. The expected summation
of the entrance time of n trains is (n + 1/2) day,
n > 0.

Proof

Since
∑

i∈T Sij = n for yard j, the summation of arrival
times of n trains, each of which is based on gamma
distribution, is (1 + 2 + . . . + n/n). Since 1 + 2 + . . . +
n = (n(n + 1)/2), then n(n + 1)/2n = (n + 1/2) days
or 12 × (n + 1) hours.
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Equation (3) summarizes the third objective
function

D3 =
∑
k∈N

⎛
⎜⎜⎜⎜⎝

12 ×

∑
i∈T

Sik + 1

∑
i∈T

Sik

×
∑
i∈T

∑
p∈P

⎧⎨
⎩max

⎡
⎣
⎛
⎝ dep∑

h=k+1

yp
i(k,h)

−
k−1∑

j=orp

yp
i(j,k)

⎞
⎠ , 0

⎤
⎦× cip × Sik

⎫⎬
⎭ , if

∑
i∈T

Sik > 0

0, otherwise

⎞
⎟⎟⎟⎟⎠ (3)

The model P1 is described as follows

min D1 + D2 + D3 (4)

subject to

∑
i∈T

dep∑
j=orp+1

yp
i(orp ,j) = rp, ∀ p ∈ P (5)

∑
i∈T

k−1∑
j=orp

yp
i(j,k)

−
∑
i∈T

dep∑
h=k+1

yp
i(k,h)

= 0,

∀ p ∈ P, k ∈ N (6)

∑
i∈T

dep−1∑
j=orp

yp
i(j,dep)

= rp, ∀ p ∈ P (7)

∑
p∈P

(
lp × yp

i(j,k)

)
<= vjk , ∀ (j, k) ∈ A, k > j,

j and k ∈ N , ∀i ∈ T (8)∑
p∈P

(
wp × yp

i(j,k)

)
<= mjk × (1 + ti),

∀ (j, k) ∈ A, k > j, j and k ∈ N , ∀i ∈ T (9)∑
p∈P

(
yp

i(j,k)

)
<= M × (

Sij + Oij

)
,

∀(j, k) ∈ A, k > j, j and k ∈ N , ∀i ∈ T (10)∑
p∈P

(
yp

i(j,k)

)
<= M × ai(j,k),

∀(j, k) ∈ A, k > j, j and k ∈ N , ∀i ∈ T (11)∑
j∈N

Oij � 1, ∀i ∈ T (12)

Sik �
k−1∑
h=1

Oih, ∀i ∈ T , ∀k ∈ N (13)

ai(j,k) � 1
2

× (
Oij + Sij + Sik

)−
k−1∑

h=j+1

ai(j,h),

∀(j, k) ∈ A, k > j, j and k ∈ N , ∀i ∈ T (14)

ai(j,k) �
(
Oij + Sij + Sik − 1

)−
k−1∑

h=j+1

ai(j,h),

∀(j, k) ∈ A, k > j, j and k ∈ N , ∀i ∈ T (15)

bp
i(j,k)

� 1
M

yp
i(j,k)

, ∀(j, k) ∈ A, k > j,

j and k ∈ N , ∀i ∈ T (16)

where M is a big positive number with M �
∑

p∈P rp.
The objective function (4) is the summation of the
three defined single objectives shown by equations (1)
to (3). Constraints (5), (6), and (7) ensure that all com-
partments leave their origins, pass middle yards, and
reach their destinations one after another. Constraints
(8) and (9) prevent assigning wagons more than the
maximum allowable to trains from length and weight
points of view, respectively. Constraints (10) and (11)
state that train i is allowed to transport wagons using
path (j, k) if and only if this path is allocated to the
set of paths passed by train i and also nodes j and k
are assigned to the node sets that are met by train i.
Constraint (12) specifies that each train has its own
origin. Constraint (13) shows that train i can dwell in
yard j if and only if the origin of train i is set before
this yard. Constraint (14) indicates that path (j, k) can
be passed by train i whenever yards j and k are met by
train i. Constraint (15) ensures that arc (j, k) is passed
by train i not only if train i stops in yards j and k, but
also if no yards between j and k are met by the train.
Constraint (16) indicates that a block of compartment
p is assigned to train i if at least one of its wagons is
transported by train i.

As it is explained, the proposed model of this arti-
cle is formulated as a non-linear one because of the
first, second, and third objective functions. The pro-
posed model can be simplified into an ordinary MIP.
The details are explained in Appendix 2.

4 APPLYING ROBUST APPROACH TO THE MODEL

Consider a typical optimization problem where there
are different input parameters. When there are uncer-
tainty with one or limited number of parameters, one
can use the traditional sensitivity analysis to analyse
the optimal solutions. However, when almost all input
parameters are contaminated with noise, a method is
needed to ensure that a small change in input data
will not violate constraints. There are two principal
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methods that address data uncertainty: stochastic pro-
gramming and robust optimization. The former case
suffers from two issues: the exact distribution of the
data needs to be known and the resulting model is
often formulated in the form of a highly non-linear
optimization problem that makes it difficult to solve.
The second approach called robust optimization is
computationally tractable and also does not require
any information about the uncertain data distribu-
tion. The robust method has recently become popular
among practitioners. Generally, robust optimization is
defined as the method for guaranteeing the feasibility
and optimality of the solution for the worst cases of
the parameters. In other words, when the robust opti-
mization method is used, one is willing to accept a
suboptimal solution for the nominal values of the data
in order to ensure that the solution remains feasible
and near optimal when the data change. Ben-Tal and
Nemirovski [14] show that a small perturbation on the
input data for some benchmark problems may result
in solutions that are not only optimal but also may be
infeasible. In robust optimization, it is assumed that
the bounds of the uncertain parameters are known,
and the aim is to find the solutions that are guaranteed
to remain feasible for all parameters values. Figure 2
depicts the effect of the robust approach graphically.

Among all parameters defined in the proposed
model, parameter rp, the number of wagons that
belong to compartment p, and parameter wp, the
mean weight of each wagon of compartment p, are
subject to perturbation in real-world applications.
In this case, in order to have a robust routing in
which facing with some alterations in the estima-
tion of data related to demands (i.e. transporting
wagons, makes no changes on the optimum solu-
tion, the proposed model is developed by apply-
ing the robust approach exhibited by Bertsimas and
Sim [15]).

Although the idea of robust optimization has
recently gained much attention, its origin goes back
to Soyster [16] where his approach admits the high-
est protection. Therefore, the objective function is
determined in the worst-case condition. There have

Fig. 2 The effect of the robust approach to the classical
optimization problem

been two more popular robust approaches since then,
which address a more conservative solution. Ben-Tal
and Nemirovski [17, 18], Ben-Tal et al. [19], El Ghaoui
and Lebret [20], and El Ghaoui et al. [21] have applied
robust optimization to linear programming prob-
lems, which results in conic quadratic programmes.
Bertsimas and Sim introduced a new different robust
approach in which the robust counterpart is of the
same class and size as the nominal problem. In this
case, if the nominal problem is a linear/mixed inte-
ger, the final robust model will remain a linear/mixed
integer. This approach has the advantage of having the
ability to control the degree of conservatism for every
constraint and guarantees feasibility for the robust
optimization problem.

Taking into account the advantages of the Bertsi-
mas and Sim method, this idea has been used for
the proposed model. A brief description of making a
robust optimization problem presented by Bertsimas
and Sim is worth looking at for further transparency of
the issue.

Consider the following nominal linear optimization
problem

max C ′X

subject to : AX � B

L � X � U

First, note that one can assume, without any loss of
generality, that the data uncertainty affects only the
elements of the left-hand-side matrix coefficients, A,
for the following reasons:

(a) the objective function can be transformed to a
constraint;

(b) when the right-hand-side constant bi is subject
to uncertainty, one can introduce a new vari-
able xn+1 with a fixed value of 1. In other words,
the constraint

∑n
j=1 aijxj � b̃i can be replaced by∑n

j=1 aijxj − b̃ixn+1 � 0, where 1 � xn+1 � 1.

Consider row i of matrix A and let Ji rep-
resent the set of coefficients in row i, which
are subject to perturbation (ãij , j ∈ Ji). In other
words, the constraint

∑n
j=1 aijxj � bi is expanded to∑

j /∈Ji
aijxj +∑

j∈Ji
ãijxj � bi. It is assumed that each

uncertain coefficient ãij , j ∈ Ji independently takes
values according to a symmetric distribution with a
mean that is equal to the nominal value aij and of half
length âij . In other words, ãij belongs to the interval
[aij − âij , aij + âij].

It is unlikely to suppose that all uncertain parame-
ters are equal to their worst-case bound; as a result,
parameter �i, 0 � �i � |Ji| is used to adjust the con-
servatism level of the final solution. It means that at
last only ��i� of the parameters subjected to perturba-
tion are allowed to change in constraint i, and one
coefficient aiei changes by (�i − ��i�)âiei . Bertsimas
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and Sim developed an approach in which if, in prac-
tice, only a subset of ��i� coefficients changes, then
the robust solution will be feasible, and even if more
than ��i� changes, then the robust solution will be
feasible with very high probability. In the Bertsi-
mas and Sim approach, the robust formulation of
the linear programme is formulated as the following
model

max C ′X

subject to
∑

j

aijxj + max
{Fi∪{ei}|Fi⊆Ji ,|Fi |=��i�,ei∈Ji ,ei /∈Fi }

×
⎧⎨
⎩
∑
j∈Fi

âij

∣∣xj

∣∣+ (�i − ��i�)âiei

∣∣xei

∣∣
⎫⎬
⎭� bi ∀ i

L � X � U (17)

where Fi ⊆ Ji indicates a subset that has ��i� mem-
bers of noise affected parameters in the ith constraint.
The added statement to the left-hand side of con-
straint i in model (17) is called the protection function.
The role of parameter �i is to adjust the robust-
ness of the proposed method against the level of
conservatism of the solution. If �i = |Ji| is consid-
ered, the Bertsimas method leads to the solution
with the maximum conservatism; on the other hand,
if �i = 0, the approach is inactive. The model (17)
is non-linear. In order to reformulate it as a linear
optimization model, Bertsimas and Sim have proved
that the protection function of model (17) equals the
objective function of the following linear optimization
problem [15]

max
∑
j∈Ji

âij|x∗
j |zij

subject to:
∑
j∈Ji

zij � �i

0 � zij � 1 ∀j ∈ Ji (18)

Next, they showed that model (17) has an equiva-
lent linear formulation, model (19), which appears by
developing the dual of model (18) and substituting it to
model (17). The dual of model (18) is shown as follows

min
∑
j∈Ji

pij + �iz′
i

subject to z′
i + gij � âij|x∗

j |, ∀i, j ∈ Ji

gij � 0 ∀j ∈ Ji

z′
i � 0 ∀i

where z′
i and gij are the dual variables of the first and

second constraints of model (18), respectively. The

linear formulation of model (17) is as follows

max C ′X

subject to
∑

j

aijxj + z′
i�i +

∑
j∈Ji

gij � bi ∀i

z′
i + gij � âijyj ∀j ∈ Ji

− yj � xj � yj ∀j

lj � xj � uj ∀j

gij � 0 ∀j ∈ Ji

yj � 0 ∀j

z′
i � 0 ∀i (19)

For more details, refer to reference [15].
Now the adjustment of the robust approach to the

introduced TFP model is shown. As stated before, two
parameters rp and wp of the main model are sub-
ject to disturbances. First focus on parameter rp and
specifically constraint (8), and the robustness against
the perturbation affected by parameter wp in con-
straint (9) is discussed in Appendix 3. The number
of wagons of compartments rp is known to belong
to an interval centred at its nominal value r̄p and of
half-length r̂p (i.e. rp ∈ [r̄p − r̂p, r̄p + r̂p], but its exact
value is unknown). Consider train i, which is planned
to transport r ′1, r ′2, . . . , r ′p, wagons of compartments
1, 2, . . ., p, respectively, in path (j, k). Since the number
of wagons of each compartment is not known exactly,
in practice, the total number of wagons planned to be
hauled by train i,

∑
h∈P r ′h can be different compared

with the planned quantity. The difference, especially
when

∑
h∈P r ′h is near to the ultimate capacity of train

i in path (j, k), vjk , may lead to void planning, which
itself causes much unwillingness.

To avoid such malfunctions, the mathematical for-
mulation has been enriched using the explained
robust procedure introduced by Bertsimas and Sim
to find a robust plan for train routing and makeup.
To make the proposed MIP model robust against
explained disturbances only, constraints (8) and (9),
which prevent assigning more than the maximum
allowable wagons to trains, from length and weight
points of view, must be studied. At first, the robust
approach is applied to inequality (8). The results are
extended to inequality (9) in Appendix 3.

Since inequality (8) does not contain unknown
parameters rp, to apply the robust approach, one can
replace variable yp

i(j,k)
with rp × xp

i(j,k)
where xp

i(j,k)
indi-

cates the proportion of wagons of compartment p
pass path (j, k) by train i to all wagons of compart-
ment p. Therefore inequality (8) can be re-written as
inequality (20). It is worth specifying that this replace-
ment holds theoretically but is not applicable when
tried to be solved by computer programs, owing to
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rounding problems∑
p∈P

(lp × r̃p × xp
i(j,k)

) <= vjk , ∀i, j, k (20)

Inequality (20) can be protected against distur-
bances by adding the protection function shown by
statement (21) into the left-hand side of inequality (20)
and replacing the unknown parameter r̃p with its
nominal value r̄p.

max
{Fi(j,k)∪{ei(j,k)}|Fi(j,k)⊆Ji(j,k),|Fi(j,k)|=��i(j,k)�,ei(j,k)∈Ji(j,k),ei(j,k) /∈Fi(j,k)}

×
{[ ∑

j∈Fi(j,k)

(lpr̂pxp
i(j,k)

)

]
+ (�i(j,k) − ��i(j,k)�)

× lei(j,k) r̂ ei(j,k) x
ei(j,k)

i(j,k)

}
(21)

Note that since xp
i(j,k)

� 0, there is no need to con-
sider its absolute value in statement (21). Moreover,
Ji(j,k) is interpreted as the set of compartments under
disturbances in which at least one of the related wag-
ons is transported from yard j to yard k by train
i. Furthermore, at most, only ��i(j,k)� number of the
compartments that are subject to perturbation (i.e.
the parameters that belong to subset Fi(j,k) ⊆ Ji(j,k)

are allowed to change and one compartment, ei(j,k),
changes by a portion of �i(j,k) − ��i(j,k)�). Statement (21)
equals the objective function of the linear optimiza-
tion problem (22)

max
∑
j∈Ji

lpr̂px∗p
i(j,k)

zp
i(j,k)

subject to
∑

p∈Ji(j,k)

zp
i(j,k)

� �i(j,k)

0 � zp
i(j,k)

� 1 ∀p ∈ Ji(j,k) (22)

The dual of model (22) is equal to

min �i(j,k)z′
i(j,k) +

∑
p∈Ji(j,k)

g p
i(j,k)

subject to z′
i(j,k) + g p

i(j,k)
� lpr̂px∗p

i(j,k)
∀p

g p
i(j,k)

� 0 ∀p

z′
i(j,k) � 0 (23)

where z′
i(j,k)

and g p
i(j,k)

are the dual variables of the
first and second constraints of model (22). Finally, the

linear robust counterpart of inequality (20) is emerged
from the embedding model (23) in inequality (20).
Inequalities (24) to (27) indicate the linear robust
representation of inequality (20) altogether∑

p∈Ji(j,k)

lpyp
i(j,k)

+ �i(j,k)z′
i(j,k) +

∑
p∈Ji(j,k)

g p
i(j,k)

� vjk ,

∀p, i, j, k (24)

z′
i(j,k) + g p

i(j,k)
� r̂p

rp
lpyp

i(j,k)
, ∀p, i, j, k (25)

g p
i(j,k)

� 0, ∀p, i, j, k (26)

z′
i(j,k) � 0, ∀i, j, k (27)

The protection parameter �i(j,k) can be defined as a
fixed value or based on the following equation

�i(j,k) = α ×
∑
p∈P

bp
i(j,k)

(28)

where α is the conservatism factor and is defined in
the range of [0, 1]. If α = 0, then the robust approach
would be inactive. Also, if α = 1, the most conservative
robust solution that considers the worst case appears.

In the remaining of this section, to illustrate the
effects of applying the robust approach to the pre-
sented mathematical formulation, some examples are
discussed.

Example 1

Consider a railway line that contains four shunting
yards. Only those compartments that are supposed
to be transported in the same direction are concen-
trated on, e.g. south to north. There are four different
compartments as illustrated in Table 1. The maximum
number of wagons and the maximum tonnage that can
be hauled by trains in each path are shown in Table 2.

In Table 1, the perturbation tolerances are shown
in parentheses. Table 2 specifies that the distance
between yards 3 and 4 is more restrictive in the man-
ner of the maximum number and weight of wagons
that could be hauled by a certain train.

The goal is to find the origin and the destination
of the formed trains as well as the assignment of the
wagons to trains such that the related costs shown in
Fig. 3 are minimized.

In order to study the changes on the robust objective
function against the crisp one, the crisp and robust

Table 1 Characteristics of the compartments

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Origin 1 1 2 3
Destination 4 3 4 4
Length of wagons 14 14 14 14
Number of wagons 92(±9) 42(±4) 28(±3) 15(±2)
Mean weight 60(±6) 70(±7) 70(±7) 60(±6)
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Table 2 Characteristics of the railway network

Path
(1, 2)

Path
(1, 3)

Path
(1, 4)

Path
(2, 3)

Path
(2, 4)

Path
(3, 4)

Maximum
length of train

1120 1120 700 1120 700 700

Maximum
weight of train

3000 3000 2000 3000 2000 2000

Fig. 3 Costs related to example 1

problems have been solved using different values for
the protection parameters defined as �v

i(j,k)
= �w

i(j,k)
=

γ , ∀i ∈ T , (j, k) ∈ A. First the crisp problem is consid-
ered, where γ = 0. Figure 4 depicts the result. Trains
and yards are shown by lines and circles, respectively.
The quantity of wagons of each compartment is shown
in parenthesis. Note that all trains are long ones.

Fig. 4 Results of the crisp type of example 1

Table 3 Noise-affected trains and paths

Train Path Total weight Weight limit

1 (3, 4) 1980 2000
2 (1, 3) 2950 3000
3 (1, 3) 2970 3000
5 (2, 4) 1960 2000

Table 3 shows the trains and paths that are near
to its final limit and therefore a small noise can
affect the solution so that it would not be feasible
any more.

Note that since all formed trains are short, there-
fore no trains are near to the length limits. The results
of Table 3 show that to protect the solution against
the bad effects of noise, applying the robust approach
is vital. Figure 5 shows the different objective func-
tion value for a different amount of γ . The problem is
solved by the assumption of forming at most 3, 4, and
5 trains individually. The CPU time, which is achieved
by a Pentium IV Laptop with an Intel Core 2 Duo pro-
cessor running at 2.53 GHz and 2 GB of RAM memory,
is reported in the figure.

Moreover, it has been fixed that �v
i(j,k)

= �w
i(j,k)

= 1,
∀i ∈ T , (j, k) ∈ A, and example 1 has been solved con-
sidering a different perturbation tolerance. Table 4
summarizes the final optimal solutions where τ =
r̂p/rp, υ = ŵp/wp, and ∀p ∈ P. Note that the third
objective functions for all the instances are found to
be equal to zero. The CPU time is reported in the last
column of the table.

As it could be expected, as the protection func-
tion values increase, the total objective function value
is increased too. The case of τ = 0 and υ = 0 shows
the crisp solution, which is obtained without the
robust approach. Moreover, the first objective func-
tion has a more important effect on the total objective
function value than the second and third objective
functions.

The robust approach aims to find solutions that
are robust against the perturbations, in the case

Fig. 5 Results of example 1
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Table 4 Results of example 1

Objective function value Objective function value
Protection
parameter First Second Total CPU time

Protection
parameter First Second Total CPU time

τ = 0, υ = 0 112 000 800 112 800 4:48 τ = 0, υ = 0.5 140 000 1135 141 135 6:18
τ = 0.2, υ = 0 112 000 800 112 800 1:51 τ = 0.2, υ = 0.5 140 000 1410 141 410 5:00
τ = 0.5, υ = 0 112 000 800 112 800 7:40 τ = 0.5, υ = 0.5 148 000 2010 150 010 12:22
τ = 0.8, υ = 0 112 000 1230 113 230 5:10 τ = 0.8, υ = 0.5 156 000 1775 157 775 6:00
τ = 0, υ = 0.2 120 000 1390 121 390 10:10 τ = 0, υ = 0.8 156 000 1730 157 730 6:40
τ = 0.2, υ = 0.2 120 000 1390 121 390 9:52 τ = 0.2, υ = 0.8 156 000 1730 157 730 5:04
τ = 0.5, υ = 0.2 120 000 1390 121 390 9:20 τ = 0.5, υ = 0.8 170 000 1560 171 560 2:36
τ = 0.8, υ = 0.2 120 000 1390 121 390 20:36 τ = 0.8, υ = 0.8 176 000 1960 177 960 7:00

of negative perturbations (i.e. wagons cancellations
in the compartment), the feasibility of the solu-
tions will not be jeopardized. In fact, in these cases,
the trains will take fewer quantity of trains, which
itself leads to an increase in the speed of trains
in routes.

5 HEURISTIC METHOD

As explained, there are many binary variables
involved in a real-world problem formulation. There-
fore, one may need to look for a near-optimal
solution as an alternative to using a heuristic
approach.

Before explaining the proposed heuristic method, it
is worth stating that the solution of model P1 can be
broken down into three parts: the routes of compart-
ments are determined first, allocating the necessary
trains for shipping the compartments is the second
part, and the exact allocation of each wagon to trains
is determined in the last step. The proposed heuristic
of this article consists of two phases.

Phase 1

The first phase addresses the first and second parts of
the solution. Model P2 is introduced to find the routes
of compartments and to allocate the necessary trains
such that the first objective function, which is the most
important among all the other objective functions, is
minimized.

Phase 2

The output of the first phase is now considered as the
input of the second phase. In phase 2, the model P1
is used under the condition that the first and second
parts of the solution are known. Therefore, the out-
put of phase 2 is the exact assignment of the wagons
to each train where the second and third objective
functions are minimized.

The model P2 is given as follows

(P2) min D1 =
∑
i∈T

∑
j∈N

∑
k∈N

{csjk × [ai,(j,k) × (1 − ti)]

+ cljk(ai,(j,k) × ti)} (29)
dep∑

k=orp+1

qp
orp ,k = 1, ∀p ∈ P, ∀k ∈ N (30)

k−1∑
j=orp

qp
j,k −

dep∑
h=k+1

qp
k,h = 0, ∀p ∈ P, ∀k ∈ N (31)

dep−1∑
j=orp

qp
j,dep

= 1, ∀p ∈ P, ∀j ∈ N (32)

∑
p∈P

(lp × rp × qp
j,k) <= vjk ×

∑
i∈T

ai(j,k), ∀(j, k) ∈ A

(33)∑
p∈P

(wp × rp × qp
j,k) <= mjk ×

∑
i∈T

[ai(j,k) × (1 + ti)],

∀(j, k) ∈ A (34)

where qp
j,k is a binary variable, which is 1 if compart-

ment p passes path (j, k) and 0 otherwise.
The robust form of P2 is similar to P1 and is not

repeated here.
Note that any solution from this model does not

necessarily have to be feasible for P1; therefore, some
modification is needed in order to adjust the results.
Algorithm 1 shows a step-by-step procedure, first to
achieve a feasible solution and second to validate it
among neighbourhood solutions. The following nota-
tions shown in Appendix 1 are used in our heuristic
algorithms.

Algorithm 1

The heuristic approach.

Step 1: let h ← 0 and exvh
(j,k)

← 0 and exwh
(j,k)

← 0,
∀ (j, k) ∈ A. The two last ones that are called expand-
ing variables are used to expand the solution space of
model P2. The expanding variables are the main tools
for achieving neighbourhood solutions.
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Step 2: if the terminating criterion is satisfied, stop;
else for all (j, k) ∈ A, add exvh

(j,k)
and exwh

(j,k)
to

the left-hand side of constraints (33) and (34),
respectively, to expand the solution space. Run
model P2.

Step 3: given the results of model P2, run model P1.

Case 1: if no feasible solution is found, find the infea-
sible paths that cause the infeasibility using algorithm
2 and go to step 4.

Case 2: if a feasible solution is found, modify the best
solution of vbest = ofvh if necessary. Select one of the
paths in which the total capacity of all the trains is
tightly shared among the trains (i.e. the path that is
near to the infeasibility condition using algorithm 2).
Go to step 4.

Step 4: let λh
(j,k)

= α × λh−1
(j,k)

, μh
(j,k)

= β × μh−1
(j,k)

, exvh
(j,k)

=
λh

(j,k)
×∑

i∈T ai(j,k), and exwh
(j,k)

= μh
(j,k)

×∑
i∈T ai(j,k), ∀

(j, k) ∈ A, where α, β > 1. Let h ← h + 1. Go to
step 2.

5.1 Termination criterion

Algorithm 1 is stopped when a certain number of iter-
ations are elapsed or the objective function value of
model P2 exceeds the total objective functions value
of the best found solution.

The following algorithm finds the infeasible or near-
to-infeasible paths.

Algorithm 2

Step 1: let j = 1 and k = 1. Empty infeasible path list
and go to step 2.

Step 2: if j = |N | − 1 and k = |N |, then go to step 5; else
if k < |N |, then k = k + 1, or j = j + 1 and k = j + 1. Go
to step 3.

Step 3: if at least one train passes path (j, k), go to step
4, else go to step 2.

Step 4: based on the results of model P2, consider the
trains that pass path (j, k) and also the compartments
that are assigned to the path. Use model P1 to find a
feasible assignment of wagons to trains in path (j, k).
If no feasible solution is obtained, add path (j, k) to
the infeasible path list. Otherwise, compute Slv(j,k) and
Slw(j,k). Go to step 2.

Step 5: if the infeasible path list is not empty, return
the list; otherwise return the path that has the mini-
mum Slv(j,k) and Slw(j,k). Terminate the algorithm.

In the remaining part of this section, an example of
the Iranian railway line is represented.

5.2 Example 2: the case study

The railroad network of Iran is shown in Fig. 6(a). This
network is divided into nine regions. The case that is
studied contains the south, Lorestan, Arak, and some
parts of Tehran regions depicted in Fig. 6(b).

There are 61 stations in the studied line, and
11 shunting yards among them can service shunt-
ing operations. The topography of the line and
maximum length of stations changes in different
parts. The distances among all shunting yards are
shown in Fig. 7. Each shunting yard is addressed by
a number.

We intend to form the necessary trains to trans-
port 12 different compartments and assign the wag-
ons of compartments to the trains. The character-
istics of the compartments are specified in Table 5.
The destinations of compartments numbered 4 and
12 are out of the considered line; therefore, in
these cases, Tehran station is considered as their
destination.

In Table 5, NI, I, and VI stand for non-important,
important, and very important compartments, respec-
tively. On the basis of topography alterations, the
studied line can be divided into two parts. If the
Andimeshk station is considered as the centre of the
studied line, the southern part is almost flat and the
stations located in this part have long internal tracks
that can embed long trains, while the northern part is
mountainous and the length of the internal track yards
is limited. The characteristics of the studied railway
line are shown in Table 6.

The cost of classification works for 1 h is assessed
as 1.8 times the cost of one-hour short train running
in the main line, which is estimated to be near 1000
units. The cost for the long train formation is 1.9 times
greater than that of the short one. Furthermore, the
fixed cost of trains and blocks that stop in the yards
for classification works are appraised around 150 and
50 units per hour, respectively. The average speed of
freight trains is about 40 km/h; hence, the cost of train
movement in the main line is 1000/40 = 25 per kilo-
metre. One-hour classification works, performed by
shunting locomotive and necessary operators, give
services to 40 wagons. As a result, the classification
cost of each wagon is 1800/40 = 45 units per wagon.
The cost related to the idle time of different wag-
ons in yards is experimentally assessed to be 2, 5,
and 10 units per hour for each wagon belonging in
non-important, important, and very important com-
partments, respectively. It is supposed that at most
only one of the compartments of each train is dis-
turbed practically. Moreover, it is also assumed that
at last nine short trains and nine long trains can be
formed in the studied line.

Given the distances among all yards depicted in
Fig. 7, the implementation of the proposed heuristic
is described in the following section.
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Fig. 6 (a) Railroad network of Iran and (b) the studied route

Fig. 7 Characteristics of the studied railway network
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Table 5 Characteristics of compartments concerning the case study

Compartment 1 2 3 4 5 6 7 8 9 10 11 12

Origin 1 1 1 1 2 3 5 7 7 7 8 8
Destination 5 8 9 10(Tabriz) 4 10 10 8 9 10 9 10(Karaj)
Number of wagons 20 30 48 45 41 10 50 10 30 30 25 12
Maximum perturbation (number of wagons) 2 3 6 5 5 1 5 1 3 3 3 2
Mean weight 80 70 60 80 60 80 50 60 80 70 60 65
Maximum perturbation (mean weight) 8 7 6 8 6 8 5 6 8 7 6 6.5
Length 20 20 14 20 20 20 14 14 20 14 14 14
Importance factor NI NI VI NI NI NI I I NI NI I NI

Table 6 Maximum allowable capacity of trains in
different parts of the network

From To
Maximum
length

Maximum
tonnage

South part Andimeshk 935 5000
Andimeshk Tehran 595 1500

5.3 Results of the case study

The model P1 is unable to even find a feasible solution
in a reasonable amount of time. As a result, the pro-
posed heuristic algorithm is applied to the case study.
Table 7 shows the abstract of the iterations to solve the
case study where OF stands for the objective function
value.

The plan of train formation and the assignment of
wagons to trains are depicted in Fig. 8.

Table 7 Iterations of solving the case study

K OF-1 OF-2 OF-3
CPU
time

1 80 950
Infeasible {path (8, 9):

3 long +1 short trains} 2:15

2 81 100
Infeasible {path (8, 9):

2 long+3 short trains} 2:52

3 82 450
Infeasible {path (7, 8):

2 long+3 short trains} 8:48
4 82 450 21 965 264 11:29+30:00

In Fig. 8, the routes that are passed by trains are
shown by lines. Moreover, the yards that are visited
by trains for classification works are represented by
circles. As can be observed, 13 trains must be formed to
transport all the 12 compartments. The last four trains
are long trains with two locomotives.

Fig. 8 TFP of the case study
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6 CONCLUSIONS

In this article, train RMP, where the number and weight
of wagons that belong to compartments were sub-
ject to disturbances, has been studied. A mathematical
model for the train formation problem has been pre-
sented as a mixed integer problem. The proposed
model of this article is able to solve not only the line
railroads, but also the network railroads. It has been
explained that any real-world applications deal with
uncertain input data. Therefore, a robust approach has
been applied, which not only effectively absorbs the
noises in data but also has the ability of controlling
the conservative level. A heuristic algorithm has been
introduced to find some near-optimal solutions in a
reasonable amount of time. The implementation of
the proposed method of this article has been applied
for the real-world case study in the Iranian railroad
industry.
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APPENDIX 1

Notation

ai(j,k) a binary variable, 1 if train i pass path
(j, k), and 0, otherwise

ati(j,k) a binary variable, 1 if train i is a long
formed train that passes arc (j, k)

A set of arcs (paths)
bp

i(j,k)
a binary variable which is 1, if at least one
of the wagons of compartment p is
transported by train i in path (j, k), and 0,
otherwise

cbj constant classification cost in yard j for a
block, a subset of compartment

ccj classification cost in yard j for
a wagon

cip one-hour idle time cost of each wagon
that belongs in compartment p

cljk long train formation cost in arc (j, k)

ctj constant classification cost in yard j for a
train

csjk short train formation cost in arc (j, k)

dep destination of compartment p
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exvh
(j,k)

train length expanding variable for path
(j, k) in hth iteration

exwh
(j,k)

train weight expanding variable for path
(j, k) in hth iteration

lp length of wagons that belong in
compartment p

mjk maximum allowable tonnage that can be
hauled by a short train in arc (j, k)

N set of nodes (yards)
Oij a binary variable, 1 if the origin of train i is

yard j, and 0, otherwise
ofvbest best found objective function value
ofvh objective function value in hth iteration
orp origin of compartment p
P set of compartments
rp number of wagons that belong in

compartment p
Sij a binary variable, 1 if train i dwells in yard

j for wagon separating and connecting
works, and 0, otherwise

Slv(j,k) mean of slack values related to the train’s
length which pass path (j, k) concerning
constraint 8

Slw(j,k) mean of slack values related to the train’s
weight which pass path (j, k) concerning
constraint 9

SSySti an integer variable that shows the number
of wagons that leave yard i by an existed
formed train

Syp
i(k)

an integer variable that represents the
quantity of wagons of compartment p that
are disconnected from train i in yard k
and wait for arrival of some already
existing formed trains

SySi cost related to the idle time of wagons that
wait in yard i for the arrival of an existing
formed trains/the number of existing
formed trains

ti a binary variable, 1 if train i is a long one,
and 0, otherwise

T set of trains
vjk maximum length of a train in arc (j, k)

wp mean weight of wagons that belong in
compartment p

yp
i,(j,k)

an integer variable that indicates the
number of wagons of compartment p that
are transported by train i for passing path
(j, k)

y ′p
i(k)

an integer variable that represents the
quantity of wagons of compartment p that
are disconnected from train i in yard k
and must be shipped to the next
destination by other trains

yyp
i(k)

an integer variable that represents the
quantity of wagons of compartment p that
are connected or disconnected to/from
train i in yard k

λh
(j,k)

train length expanding coefficient for path
(j, k) in hth iteration

μh
(j,k)

train weight expanding coefficient for
path (j, k) in hth iteration

APPENDIX 2

Generating MIP model

As stated in section 3, the objective functions are non-
linear. How the functions can be linearized is shown
here.

First objective function

Let rewrite equation (1) as follows

D1 =
∑
i∈T

∑
j∈N

∑
k∈N

csjk × ai,(j,k)

+
∑
j∈N

∑
k∈N

(
(cljk − csjk)

∑
i∈T

ai,(j,k) × ti

)

Note that ai,(j,k) and ti are both binary variables. One
can replace ai,(j,k) × ti by a new binary variable ati(j,k)

such that the following if-condition is satisfied.
If ti = 1 and ai,(j,k) = 1, then ati,(j,k) = 1, else

ati,(j,k) = 0.
The above if-condition can be replaced with the

following constraints

ati,(j,k) � ai,(j,k) + ti − 1

ati,(j,k) � ai,(j,k) + ti

2

Second objective function

One can easily replace

∣∣∣∣∣∣
k−1∑

j=orp

yp
i(j,k)

−
dep∑

h=k+1

yp
i(k,h)

∣∣∣∣∣∣
by a new integer variable yyp

i(k)
such that

−yyp
i(k)

�
k−1∑

j=orp

yp
i(j,k)

−
dep∑

h=k+1

yp
i(k,h)

� yyp
i(k)

Third objective function

First replace

max

⎡
⎣
⎛
⎝ dep∑

h=k+1

yp
i(k,h)

−
k−1∑

j=orp

yp
i(j,k)

⎞
⎠ , 0

⎤
⎦
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with y ′p
i(k)

. Therefore

y ′p
i(k)

�

⎛
⎝ dep∑

h=k+1

yp
i(k,h)

−
k−1∑

j=orp

yp
i(j,k)

⎞
⎠

y ′p
i(k)

� 0

Second, consider the multiplication of the integer
variable y ′p

i(k)
by the binary variable Sik . A new inte-

ger variable Syp
i(k)

is defined such that the following
if-condition is fulfilled.

If Sik = 1 then Syp
i(k)

= y ′p
i(k)

, else Syp
i(k)

= 0.
The above if-condition can be replaced with the

following constraints

Syp
i(k)

� M ′ × Sik

Syp
i(k)

� y ′p
i(k)

Syp
i(k)

� y ′p
i(k)

− M ′(1 − Sik)

Syp
i(k)

� 0

where M ′ is a relatively big positive number with
M ′ � max{rp; p ∈ P}. Now, consider the integer vari-
able Syp

i(k)
, which is divided by a summation of binary

variables
∑

i∈T Sik . In this case, a new real variable SySk

is introduced, which is replaced with

∑
i∈T

∑
p∈P (cip × Syp

i(k)
)∑

i∈T Sik

To that end, the following constraint must be satisfied

∑
i∈T

∑
p∈P

(cip × Syp
i(k)

) =
∑
i∈T

Sik × SySk

The right-hand side of the above constraint is a mul-
tiplication of the real variable SySk by a summation of
binary variables

∑
i∈T Sik .

To make the constraint linear, one can replace∑
i∈T Sik × SySk by

∑
i∈T SSySik such that SSySik is a real

variable such that the following if-condition is satisfied
If Sik = 1, then SSySik = SySk , else SSySik = 0.
The above if-condition can be replaced with the

following constraints

SSySik � M × Sik

SSySik � SySk

SSySik � SySk − M (1 − Sik)

SSySik � 0

where M is a big positive number with M �
∑

p∈P rp.

Moreover

12 ×
∑

i∈T Sik + 1∑
i∈T Sik

×
∑
i∈T

∑
p∈P

⎧⎨
⎩max

⎡
⎣
⎛
⎝ dep∑

h=k+1

yp
i(k,h)

−
k−1∑

j=orp

yp
i(j,k)

⎞
⎠, 0

⎤
⎦× Sik

⎫⎬
⎭

must be equal to 0, if
∑

i∈T Sik = 0; therefore, the
following constraint must hold

SySk � M ×
∑
i∈T

Sik

APPENDIX 3

Robust counterpart of constraint (9)

The robust counterpart of inequality (8) is represented
in section 5. Noise in wp in addition to rp is consid-
ered. Trains can haul a limited tonnage in each path
based on the topography of the path and also the haul-
ing power of trains. In practice, the weight of trains
may differ from the amount which is considered in the
planning stage. As a result, if the total tonnage that
must be transported in a certain path with a particu-
lar train exceeds the allowable level, the movement of
trains will be affected by the disturbances and many
other relative problems will occur.

To avoid such malfunctions, inequality (9) has been
enriched using the robust procedure introduced by
Bertsimas and Sim explained in section 5. Similar
to constraint (8), one can re-write constraint (9) as
inequality (35)

∑
p∈P

(wp × rp × xp
i(j,k)

) <= mjk × (1 + ti) (35)

Inequality (9) can be protected against disturbances
by adding the protection function shown by state-
ment (36) into the left-hand side of inequality (9)

max
{F ′

i(j,k)
∪{e′

i(j,k)
}|F ′

i(j,k)
⊆J ′

i(j,k)
,|F ′

i(j,k)
|=��′

i(j,k)
�,e′

i(j,k)
∈J ′

i(j,k)
,e′

i(j,k)
/∈F ′

i(j,k)
}

×
{( ∑

j∈F ′
i(j,k)

ŵp × r̂p × xp
i(j,k)

)
+ (�′

i(j,k)−��′
i(j,k)�)

× ŵe′
i(j,k) × r̂ e′

i(j,k) × x
e′

i(j,k)

i(j,k)

}
(36)

Note that since xp
i(j,k)

� 0, there is no need to consider
its absolute value in statement (36). The protection
function (36) equals the objective function of the
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following linear optimization problem

max
∑
j∈Ji

ŵpr̂px∗p
i(j,k)

z′′p
i(j,k)

subject to
∑

p∈Ji(j,k)

z′′p
i(j,k)

� �i(j,k)

0 � z′′p
i(j,k)

� 1 ∀p ∈ Ji(j,k) (37)

The dual of model (37) is equal to

min �′
i(j,k)z

′′′
i(j,k) +

∑
p∈Ji(j,k)

g ′p
i(j,k)

subject to z′′′
i(j,k) + g ′p

i(j,k)
� ŵpr̂px∗p

i(j,k)
, ∀p

g ′p
i(j,k)

� 0, ∀p

z′′′
i(j,k) � 0, ∀i, j, k (38)

Finally, the robust counterpart of inequality (9)
is obtained from the inducing model (38) in

inequality (9). Therefore, inequalities (39) to (42) make
the robust counterpart of inequality (9)

∑
p∈Ji(j,k)

w̄pyp
i(j,k)

+ �′
i(j,k)z

′′′
i(j,k) +

∑
p∈Ji(j,k)

g ′p
i(j,k)

� mjk × (1 + ti), ∀p, i, j, k (39)

z′′′
i(j,k) + g ′p

i(j,k)
� ŵp × r̂p

rp
× yp

i(j,k)
, ∀p, i, j, k (40)

g ′p
i(j,k)

� 0, ∀p, i, j, k (41)

z′′′
i(j,k) � 0, ∀i, j, k (42)

Equation (43) shows the proposed formula for the
protection parameter

�′
i(j,k) = β ×

∑
p∈P

bp
i(j,k)

(43)

where β is called the conservatism factor and has a
similar role as that of α in equation (28).
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